
1 Model

Computer simulations were performed in a model representing an epidermal
(L1) shoot tissue layer which combined mechanical and biochemical inter-
actions on the level of single cell and cell wall compartments. We designed
a three-dimensional finite element model which accurately reflected elastic
properties and geometry of cells, and which was highly based on the model
presented in Hamant et al. (2008). The model was limited to not including
plastic growth and dividing cells. We assumed that the L1 layer is under
tension coming from turgor pressure and interaction with inner tissue. This
implies that anticlinal walls of cells are stretched in the plane of the layer
and experience tensile stresses. The magnitude of those stresses depends on
the exact geometry of the cells and the elastic properties of their walls. The
walls of the cells despite being rigidly connected to walls of the neighbors
remain associated with each cell. This means that a wall between two cells
is represented as two compartments, for which elastic properties are inde-
pendent. The stress perceived in each part of the wall depends on elasticity
of both compartments of a wall segment and thus changes of elastic modu-
lus in the wall belonging to one cell affects stress in the wall of the other,
neighboring cell as well. We assume further that elastic properties of the
cell walls are affected by auxin concentration in this cell. Therefore the pro-
posed mechanism conveys a way of communicating the relative difference in
auxin level between neighboring cells to their walls and membranes, such
that higher stresses localize to the wall with lower auxin concentration. If
we assume now that high stress in the wall positively simulates relocation
of the PIN1 to this membrane we obtain a positive feedback loop between
auxin concentration in the cell and transport of auxin to this cell, which can
lead to formation of a pattern of auxin peaks in the simulations.

The set of equations describing the change of auxin level ai in the cell
i including production, degradation, passive transport and PIN1 dependent
active efflux of auxin can be written as:

dai

dt
= ca − daai +

∑

k∈Ni

D(ak − ai) +
∑

k∈Ni

(Pkih(ak)− Pikh(ai)), (1)

where ca is constant production, da degradation, D passive transport con-
stant. We use the cell-based formulation from Sahlin et al. (2009), based on
the chemiosmotic transport theory, and where the constants are in relation
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to the permeability of the active transport term (e.g. D ∝ paH/pPIN , where
paH is the passive permeability of the protonated form of auxin and pPIN is
the permeability of the PIN1 dependent efflux [Sahlin et al. 2009]). The in-
flux mediator AUX1 is assumed to be symmetrically localized, and apoplastic
diffusion is not taken into account. The active transport is saturated with
auxin level described by a Michaelis-Menten function h(ai);

h(ai) =
ai

Ka + ai

. (2)

PIN1 is assumed to be in quasi-equilibrium and the functions Pij describe
the concentration of the PIN1 protein resulting from stress dependent cycling
between cytosol and membrane in the wall separating cells i and j;

Pij =
Pf(sij)

1 +
∑

k∈Ni
f(sik)

. (3)

The function f(sij) = fexo(sij)/fendo(sij) describing the response of auxin
to stress can be seen as a combination of an increased exocytosis (fexo(sij))
and/or a decreased endocytosis (fendo(sij)) and we chose to use

f(sij) = k2(sij)
n, (4)

where k2 and n are constants and sij is the stress measure in the wall of
cell i neighboring cell j and P measures the total amount of the PIN1 in the
cell. The auxin dependent elastic modulus of the walls of cell i is given by

E(ai) = Emin +
(Emax − Emin)km

3

am
i + km

3

, (5)

where Emin and Emax are expected minimal and maximal values of the
wall elasticity respectively and k3 and m are constant parameters [Hamant et al. 2008].
In the simulations we used the set of parameters estimated from experimental
measurements (for auxin transport rates), or previous models where appli-
cable (Tab. 1) [Jönsson et al. 2006, Hamant et al. 2008, Sahlin et al. 2009].

2 Stability analysis

To perform stability analysis of the homogenous fixed state we consider small
deviations of auxin concentrations εi from the homogenous solution a

ai = a + εi, (6)
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ca da D Ka P k2 n k3 m Emin Emax

0.0012 0.0012 0.00035 1.0 1.0 3.0 3 1.0 2 80MPa 400MPa

Table 1: Typical numerical values of the parameters used in the model of
stress-dependent PIN1 cycling between cell and wall compartments and auxin
transport between cells. See the text for description of the symbols.

and linearize the model equations with respect to it. We also assume a
regular lattice of cells, so all the walls have the same unperturbed length L0

and cross section A0, and isotropic force on each wall F . In such case the
strain of the composite wall becomes

eij =
F/A0

E(ai) + E(aj)
, (7)

and the stress perceived on the one side of the wall is

sij =
F/A0

1 + E(aj)

E(ai)

. (8)

Thus we can express the relation (3) as a function of auxin concentration in
cells i, j and k ∈ Ni (neighbors to cell i)

Pij = g(ai, aj, {ak}k∈Ni
) ≡ f̃(ai, aj)

1 +
∑

k∈Ni
f̃(ai, ak)

, (9)

where

f̃(ai, aj) = f (sij(ai, aj)) = k2F/A0
En(ai)

(E(ai) + E(aj))n
, (10)

and since E(aj) is a decreasing function of auxin concentration in the neigh-
boring cell (aj), f(sij(ai, aj)) is an increasing function of the auxin concentra-
tion in the neighboring cell, and hence we can directly relate stability anal-
ysis of this model with the previously proposed concentration-based model
[Jönsson et al. 2006, Sahlin et al. 2009], and the continued analysis follow
the cell-based analysis in Sahlin et al. (2009).

Linearizing Eq.(1) we obtain

dεi

dt
=

∑

k∈Ni


C1(εk − εi)− C2(

∑

l∈Nk

εl −
∑

l∈Ni

εl)


− daεi, (11)
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with constants with respect to ε, C1 and C2 defined as

C1 = D +
∂h(ai)

∂ai

∣∣∣∣∣
a

g(a, a, {a})− h(a)
∂g(ai, aj, {ak})

∂aj

∣∣∣∣∣
a

+ (12)

h(a)
∂g(ai, aj, {ak})

∂ai

∣∣∣∣∣
a

(13)

C2 = −h(a)
∂g(ai, aj, {ak})

∂ak

∣∣∣∣∣
a

. (14)

By applying a Fourier transform with

εk =
∑

i

εie
−ik·xi , (15)

we diagonalize the linearized model equation and by defining the form factor
S(k) as

S(k) =
∑

j

eik·ej , (16)

where ej is a set of vectors from a cell center to the centers of its neighbors,
we can write it in the form

dεk

dt
=

[
NC1(S(k)− 1)−N 2C2S(k)(S(k)− 1)− da

]
εk = λkεk, (17)

where N is the number of cell neighbors. If the real part of any of the
eigenvalues λk is positive, a small perturbation from the homogeneous state
makes the system unstable, which is a requirement for spontaneous pattern
creation. We see that the requirement for positive eigen vectors is equivalent
in this case to

(C1 −NC2)
2

4C2

> da. (18)

This means that high value of da, which is an auxin degradation constant, will
destroy pattern forming capabilities of the model. The constant C1 includes
D, the relative strength of the passive and PIN1 mediated auxin transport
rates, and both C1 and C2 depend on the values and slopes of the stress
feedback and auxin transport functions at the homogenous fixed point, as
described in more detail in Sahlin et al. (2009).

The wave vectors corresponding to the largest eigenvalue belong to the
set

Ω =
{
k : S(k) =

1

2

( C1

NC2

+ 1
)}

. (19)
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