Table S2. Variables and parameters for the Feeding Cycle Model.

Variable or Parameter	Symbol	Value or Constraints	Source (where relevant)
Base instantaneous mortality rate per day	r	0.12	a
Length of gonotrophic cycle (days)	W	2.85	a
Time spent host searching and feeding during a cycle (days)	b	1.26	b
Time spent finding oviposition site and laying during a cycle (days)	φ	1.26	b
Length of resting period (days)	η	0.32	b
Time required for parasite sporogonic development (days)	d	10.78	a
Proportion human population infectious for malaria	p	0.04	a,c
Probability attacks non-human host	H	0.17	a
Probability killed when attacking host before biting	a_1	0.05	d
Probability killed when attacking host after biting (excluding mortality from insecticide treatments)	a_2	0.05	d
Probability becomes infected with malaria when biting infectious human host	M	0.80	
Cycle number (identifies specific cycle in the ten cycles over which average probabilities are tracked in the FCM)	i	0≤ <i>i</i> ≤10	
Probability contacts and is killed by instant action (conventional or age-dependent) treatment when attacking human host, before biting	k_i	for conventional chem $k_i = 0.80$ $i=1,210$ for ALI $k_i = 0$ i <effective <math="" age="">k_i = 0.8 i≥effective age</effective>	
Malaria status, the number of whole or partial cycles since infection with malaria	m	$0 \le m \le 10$ $m = 0$ means not infected	
Differential mortality factor	δ	$\delta = 1$ when $m > 0$ $0 \le \delta \le 1$ when $m = 0$	
Type of host attacked	h	h=1, non- human h=2, non- infectious human	

Variable or Parameter	Symbol	Value or Constraints	Source (where relevant)
		<i>h</i> =3, infectious human	
Normalised number of eggs laid per successfully laying mosquito per cycle	\boldsymbol{L}	100	
Average normalised number of eggs laid in cycle i by mosquitoes surviving to the start of cycle i	F_i		
Average normalised number of eggs laid in cycle i , by mosquitoes starting cycle i with malaria status m	$f_{i,m}$	m <i< td=""><td></td></i<>	
Average probability of survival from start of cycle i to start of cycle $i+1$	S_i		
Average probability that a mosquito starting cycle i with malaria status m , will survive to start of cycle $i+1$	$S_{i,m}$	m < i	
Average probability of a mosquito being alive at start of period <i>i</i> .	V_{i}		
Average probability of a mosquito being alive, with malaria status <i>m</i> at start of period <i>i</i> .	$v_{i,m}$	m < i	
Probability that a mosquito alive at start of cycle i with malaria status m , survives and bites host type h in cycle i	$q_{i,m,h}$	m <i< td=""><td></td></i<>	
Probability that a mosquito alive at start of cycle <i>i</i> with malaria status <i>m</i> having survived to bite, then survives to lay eggs	$Z_{i,m}$	m <i< td=""><td></td></i<>	
Average number of infectious bites in cycle <i>i</i> per mosquito alive at the start of cycle <i>i</i>	I_i		
Average lifetime number of infectious bites per mosquito	и		
Time, measured in whole units equal to length of sporogonic cycle, from infection of mosquito to cycle from which mosquito gives infectious bites	D	0< <i>D</i> ≤10	

- a. Average value, based on data from four foci of intense malaria [1]
- b. Assuming c.11.1% of every cycle is spent resting (8 hours in a 72 hour cycle), with the rest of the gonotrophic cycle divided equally between laying and feeding
- c. Derived from overall probability biting human host will result in malaria infection in mosquito [1]
- d. Based on 0.10 mortality during attack [2], assuming equal probabilities of death before and after a feed.

References

- 1. Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, et al. (2000) A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. *American Journal of Tropical Medicine and Hygiene* 62: 535-544.
- 2. Killeen GF, Smith TA (2007) Exploring the contributions of bed nets, cattle, insecticides, and excitorepellency to malaria control: a deterministic model of mosquito host-seeking behaviour and mortality. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 101: 867-880.